

Working Group 1 Report

J. Scott Berg
Brookhaven National Laboratory
10 July 2003
FFAG03, KEK

Talks: Longitudinal Dynamics

- Two talks on longitudinal dynamics in non-scaling FFAGs
 - ◆ Focused on what phase space looked like
 - ◆ Parametric dependence of system
 - ◆ Longitudinal phase space transmission
 - Choosing initial phases of RF cavities
 - **★** Improves phase space linearity
 - **★** Don't really get more turns
 - ◆ Tracking results from Dejan, Shane

Talks: Proton Driver

- Bill Weng presented a work plan for Proton Driver work
- Alessandro Ruggiero presented work on an updated version of his FFAG scheme with only a single ring taking you to 2 GeV.
 - ◆ Shinji Machida talked a bit on a the details of a similar lattice; had spiral angle
 - Introduced a field index n = 10
 - ◆ Fields kept low to avoid stripping H[−]
 - Keep orbits separated, avoiding collisions
 - More work to be done on this design
 - ◆ Difficulties running (pseudo-)CW due to longitudinal dynamics?

Talks: Proton Driver (cont.)

- Weiren Chou presented ideas for an 8 GeV FFAG proton driver
 - High rep rate
 - ◆ Low beam intensity, lack of eddy currents, DC power supplies are advantages of FFAGs over synchrotron
 - ◆ Calling for large factor of acceleration: 9 or so!
 - ◆ Increase rep rate from existing proton driver design

Misc. Progress Reports

- We are trying to understand whether in triplets, DFD or FDF is a better scheme. Dejan has a good argument for FDF, but others seem to finding the two to be equally good, at least from the point of view of time-of-flight.
- Discussion of non-scaling baseline designs
 - ◆ Dejan has a design for the high energy ring with a lower time-of-flight variation. Need to ascertain why it is better than the one I presented.
 - ★ His drifts between magnets are certainly lower
 - ★ Look at Dejan's lattice with my code, see where it might not be meeting specs
 - **★** Try doing my optimization with higher pole tip fields
 - ◆ Reducing RF drift length on low energy design gives some improvement, but still bad.
 - ◆ Dejan is also working on improving low energy design.

Plans for Today

- Morning talk on longitudinal dynamics in scaling FFAGs (Aiba)
- Maybe a morning talk on FDF/DFD (Yoshimoto)
- Afternoon talk on an FFAG proton driver lattice (Machida)
- Hopefully some work on one of our goals
 - ◆ Design of Scaling/Non-scaling FFAG to US/Japan specs
 - Design of electron model